3 Tesla Zero TE Imaging of the Hip

Benjamin M. Howe M.D.¹, Stephen M. Broski M.D.¹, David W. Stanley² B.S.R.T, Dan W. Rettmann B.S. ², Adam C. Johnson⁠¹ M.D., Heidi A. Edmonson¹ Ph.D., Kimberly K Amrami¹ M.D.

¹Department of Radiology, Mayo Clinic, Rochester MN USA
²GE Healthcare, Waukesha, WI, USA

howe.benjamin@mayo.edu
Mayo Clinic, Rochester, MN
International Skeletal Society 43rd Annual Meeting
September 7-9, 2016
Technical Report – TR_005
Disclosures

• David W. Stanley B.S.R.T. is employed by GE Healthcare

• Dan W. Rettmann B.S. is employed by GE Healthcare

• PSD is a works in progress; exams performed under IRB approved research protocol
Objectives

• Review cross sectional and 3D applications in the structural evaluation of the hip
• Discuss zero echo time (ZTE) bone imaging of the pelvis and hip
• Discuss the basics of 3D rendering
Introduction

Background

• Structural hip abnormalities have become a major focus in orthopedic surgery.

• Hip dysplasia has long been known to contribute to accelerated osteoarthritis of the hip.

• More recently, femoroacetabular impingement has been implicated as a mechanism for the development of osteoarthritis in non-dysplastic hips.

Introduction
Femoroacetabular Impingement

• Cam-type FAI
 • Caused by an aspherical femoral head
 • Decreased femoral head-neck offset
 • Anterolateral osseous bump results in “pistol grip” finding on radiographs
Introduction

Femoroacetabular Impingement

• Cam-type FAI
 • The alpha angle on CT and MRI is an indicator of cam morphology
 • Normal alpha angle on CT and MRI on axial oblique plane is <55°

Alpha Angle Measured on a Pelvic CT Performed for the Evaluation of FAI
Introduction
Femoroacetabular Impingement

- Pincer type impingement
 - Acetabular over coverage
- General
 - Coxa profunda
 - Acetabular retroversion
- Focal
 - Anterior
 - Posterior
Introduction
Femoroacetabular Impingement

• Pincer type impingement
 • Various measurements reported on cross sectional imaging studies

Acetabular Anteversion Measured on a Pelvic CT Performed for the Evaluation of FAI
Introduction
Femoroacetabular Impingement

• The most common FAI type is mixed from cam and pincer morphology and the abnormalities can be complex

• Patients often undergo CT for:
 • Confirmation of structural abnormalities that may be difficult to appreciate on radiographs
 • Creation of 3D images to aid in surgical planning

• Although some measurements can be made on standard MR sequences, the 3D models cannot

Zero Echo Time Bone Imaging
3D Imaging Processing

• CT is optimal for the creation of 3D images of osseous anatomy:
 • High spatial resolution
 • Rapid acquisition and availability
 • High contrast between bone and soft tissues

Zero Echo Time Bone Imaging
3D Imaging Processing

• Generation of 3D model from CT requires little time and technologist training.

• The drawback of CT is the radiation exposure in the young and typically healthy population with hip pain.

Zero Echo Time Bone Imaging

• Challenges in MR of cortical bone
 • Cortical bone has a low proton density (15-20% free water by volume)
 • Cortical bone has a fast decay time (T2* of 390 µS at 3T)
 • High resolution, isometric voxels are required for 3D rendering

Zero Echo Time Bone Imaging

• ZTE Pulse sequence
 • Nonselective pulse excitation
 • 3D center out radial sampling
 • Gradients are not ramped down between repetitions
 • Encoding starts immediately at the time of excitation, TE=8µs

Zero Echo Time Bone Imaging

Parameters

- Imaging was performed on 3.0T Discovery MR750W (GE Healthcare, Waukesha, WI, USA)
- 32 channel body array
- 40 cm
- TR ~ 400ms
- Matrix 320 x 320
- Nex = 4
- BW 62.5 kHz
- Resolution 1.3-1.6 mm
- Scan time ~ 4-6 minutes
ZTE image prior to logarithmic rescaling of the normalized image intensities
Zero Echo Time Bone Imaging

• The intrinsic properties of ZTE creates two histogram intensity peaks:
 1. Lower Peak:
 • Cortical Bone
 • Gas
 2. Upper Peak:
 • All other tissues (muscle, fat, tendons, ligaments, fluid)

Zero Echo Time Bone Imaging

• Automatic Post Processing:
 • A histogram-based intensity correction algorithm is applied as described by Wiesinger et al.
 • A logarithmic rescaling is used to enhance cortical bone
 • This aids in threshold segmentation

• Non-rescaled axial ZTE image of the pelvis
 • Slice Thickness 1.3mm
 • Acquisition time 6:11

• Logarithmic rescaled image with greyscale inversion
• Non-rescaled axial ZTE image of the pelvis
 • Slice Thickness 1.6mm to shorten time and increase SNR
 • Acquisition time 3:58

• Logarithmic rescaled image with greyscale inversion
Standard Cross Sectional Measurements Performed on 2D reformatted ZTE images

Acetabular Anteversion 19.5°

Alpha Angle 55.8°
2D ZTE Femoral Neck Radial Reformats for Head/Neck Morphology
Zero Echo Time Bone Imaging
3D Imaging Processing

• CT is optimal for the creation of 3D images of osseous anatomy:
 • High spatial resolution
 • Rapid acquisition and availability
 • High contrast between bone and soft tissues

• Generation of 3D model from CT requires little time and technologist training

• The drawback of CT is the radiation exposure in the young and typically healthy population with hip pain

3D Generated Models
Maximum Intensity Projections

• Requires minimal processing time
• Lack detail of 3D models created from CT

ZTE MIP
Zero Echo Time Bone Imaging
3D Imaging Processing

• Segmentation:
 • Refers to the process of converting pixels from a 2D image set into a 3D object
• Requires:
 • Isometric voxels
 • High resolution
 • High contrast between the bones and soft tissues
Zero Echo Time Bone Imaging

3D Imaging Processing

• Threshold:
 • Accepting or rejecting the pixels within a dataset based on greyscale pixel value
 • Limited in standard MR techniques
 • Starting point for ZTE bone segmentation

Raw threshold of the hemipelvis from ZTE
3D Image of the Pelvis and Hips Generated from a 1.3 mm ZTE Acquisition

Created with Materialise 3-Matic® and Mimics ® (Materialise, Leuven, Belgium)
3D Image of the Pelvis Generated from a 1.3 mm ZTE Acquisition

3D Generated Model with Wrapping and Smoothing

3D Generated Model with Overlying Mesh

Created with Materialise 3-Matic® and Mimics ® (Materialise, Leuven, Belgium)
3D Image of the Proximal Femur
Generated from a 1.3 mm ZTE Acquisition

Created with Materialise 3-Matic® and Mimics ® (Materialise, Leuven, Belgium)
Zero Echo Time Bone Imaging
3D Imaging Processing Limitations

- Fascial Plane Artifacts:
 - Occur at muscle interfaces and fascial planes
 - Artifact is easy to remove in post processing as it is remote from cortex
Zero Echo Time Bone Imaging
3D Imaging Processing Limitations

• False Positive Bone Voxels:
 • Occurs at the surface of the cortex
 • Difficult to remove in 3D post processing
 • 3D smoothing and wrapping algorithms are helpful, but lead to artifactual bone contours

Artifact at 1.3 mm
Artifact at 1.6 mm
Zero Echo Time Bone Imaging
3D Imaging Processing Limitations

• Thin Cortical Bone:
 • Some areas of thin cortical bone are not detected
 • This results in cortical defects in 3D models

Thin Cortex of Posterior Femoral Head
Conclusion

• This ePoster reviews our initial experience with ZTE in osseous evaluation of the pelvis and hips
• As this has only been attempted in several volunteers, further evaluation is required
References

