STERNAL LESIONS: Pictorial essay.

HOSPITAL SÍRIO-LIBANÊS, São Paulo – SP, Brazil.

*luzattar@gmail.com

1Department of Radiology
The authors of this educational review declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

The authors state that this work has not received any funding.
INTRODUCTION:

- Sternal abnormalities are commonly seen in clinical practice.

- In addition to the numerous anatomical variations and congenital anomalies, the sternum and sternoclavicular joints can be affected by various pathological conditions such as trauma, infection, tumors, degenerative and inflammatory changes.

- This study aims to demonstrate and illustrate such conditions, as the knowledge of its characteristics and imaging findings are essential for correct diagnosis and patient management.
DISCUSSION:

- Sternum injuries are common and should be properly recognized and characterized; using different imaging methods we will illustrate the variations of normality, congenital abnormalities and characteristic radiographic findings of sternal lesions highlighting: psoriatic arthritis, inflammatory osteitis, SAPHO syndrome, neoplastic, traumatic and degenerative lesions.
ANATOMY: **STERNUM:** Flat bone, with 3 parts:

* **MANUBRIUM:** superior central (jugular) notch and 2 lateral fossae that articulate with the clavicles. Also articulates with the 1° and 2° ribs and the body of the sternum.

 - **Attachments:** sternohyoideus, sternothyroideus, subclavius, pectoralis major, transversus thoracis and sternocleidomastoideus muscles.

* **BODY OF THE STERNUM:** articulates with the manubrium, xiphoid process and with the 2° through 7° ribs.

 - **Attachments:** transversus thoracis and pectoralis major.

* **XIPHOID PROCESS:** cartilaginous or ossified / fused to the sternal body.

 - **Attachments:** rectus abdominis, diaphragm and transversis thoracis.
STERNAL LESIONS

ANATOMY: STERNUM:

*STERNOCLAVICULAR JOINT: synovial joint, connects the axial skeleton to upper extremity.

- **Components:** anterior sternoclavicular, interclavicular and costoclavicular ligaments, articular disk and articular cavities.

*MANUBRIOSTERNAL JOINT: synchondrosis covered with hyaline cartilage and separated by a disk of fibrocartilage (dorsal and ventral ligaments), forming the sternal angle.

- Conversion to synovial joint in 30% (disk absorption) / Ossification of the disk in 10% (synostosis).

*XIPHISTERNAL JOINT: synchondrosis, usually ossifies to form a synostosis.
STERNAL LESIONS

ANATOMY: STERNUM:

ATTACHMENTS:

1. SUBCLAVIUS
2. STERNOCLEIDOMASTOIDEUS
3. PECTORALIS MAJOR
4. RECTUS ABDOMINIS
5. STERNOHYOIDEUS
6. STERNOTHYROIDEUS
7. TRANSVERSUS THORACIS
8. DIAPHRAGM and TRANSVERSIS THORACIS

- JUGULAR NOTCH
- CLAVICULAR NOTCH
- 1st RIB ARTICULATION
- 2nd RIB ARTICULATION
- STERNAL ANGLE
- TRANSVERSE RIDGES
- COSTAL NOTCHES
STERNAL LESIONS

*SPectrum of the sternal lesions:

I. CONGENITAL ABNORMALITIES / ANATOMICAL VARIANTS
II. DEGENERATIVE CHANGES
III. TRAUMA
IV. TUMORS
V. INFLAMMATORY CHANGES
VI. INFECTION
VII. OTHERS
I. CONGENITAL ABNORMALITIES / ANATOMICAL VARIANTS:

CASE 1: PECTUS EXCAVATUM: most common congenital deformity of the sternum.
- Sternum is displaced posteriorly and, as a consequence, the ribs protrude anteriorly.
- Genetic component (**45% familial**)
- May result in decreased cardiac stroke volume and decreased total lung capacity.

TILTED STERNUM: sternum that is oriented obliquely, determining unilateral irregularity / asymmetry of the chest wall

15-years-old male patient: (A) Lateral chest radiograph; (B) Sagittal CT image; (C) Axial CT image: showing vertical orientation of the anterior aspect of the ribs and the depressed (**red arrows**) and tilted sternum (**white arrow**).
PECTUS INDEX: axial CT/MR: dividing the transverse diameter of the chest by the anteroposterior diameter. *Normal*: 2.56 (+-0.35). *Surgical*: > 3.25.

CASE 2: PECTUS EXCAVATUM TREATMENT:

15-years-old male patient: Axial CT image before (A) and after (B) 5 minutes of vacuum; (C) Posteroanterior chest radiograph image; (D) CT reconstruction: showing the depressed sternum (with a pectus index of 5.1 before and 3.9 after the vacuum) and the vacuum bell system where a suction cup is used to create a vacuum at the chest wall.
I. CONGENITAL ABNORMALITIES / ANATOMICAL VARIANTS:

*CASE 3: PECTUS CARINATUM:
- The sternum in pectus carinatum is displaced anteriorly.
- More than 30% are associated with scoliosis; 25% familial.
- Clinical manifestations include exercise intolerance / shortness of breath.

*PECTUS INDEX : 1.42-1.98.
I. CONGENITAL ABNORMALITIES / ANATOMICAL VARIANTS:

*CASE 4: STERNALIS MUSCLE:

- Uncommon anatomic variant.
- Superficially and perpendicular to the pectoralis major muscle, parallel to the sternum.
- Runs from the infraclavicular region inferiorly to the caudal aspect of the sternum.

*Reports of the sternalis muscle simulating breast nodules in mammography.

56-years-old male patient: (A) Axial CT image, (B) Coronal CT reconstruction and (C) Sagittal CT image showing bilateral sternalis muscle (red arrows).
II. DEGENERATIVE CHANGES:

*CASE 5: OSTEOARTHRITIS: STERNOClavicular JOINT:

- Most common abnormality affecting the sternoclavicular joint.
- Also occur in the manubriosternal joint.

95-years-old female patient. (A) Sagittal; (B) Coronal and (C) Axial CT images: showing degenerative changes in right sternoclavicular joints with bone sclerosis, narrowing of the joint space and gas within the joint space (red arrows).
II. DEGENERATIVE CHANGES:

*CASE 6: OSTEOARTHRITIS: COSTOSTERNAL JOINT:

81-years-old male patient. (A) Axial MRI T1-WI; (B) Axial MRI STIR WI; (C) Coronal CT image; (D) Axial CT image: showing degenerative changes in the right costosternal joint with osteophytes and sclerosis in CT images *(white arrows)*, and soft-tissue swelling of the joint and intra-articular effusion in MRI *(red arrows)*.
II. DEGENERATIVE CHANGES:

*CASE 7: OSTEOARTHRITIS: MANUBRIOSTERNAL JOINT:

71-years-old male patient. (A) Sagittal CT image and (B) Coronal CT image: showing degenerative changes in the manubriosternal joint with sclerosis of both articular surfaces and a subchondral cyst on the body of the sternum (red arrows).
III. TRAUMA:

CASE 8: STERNAL FRACTURE:

- High-energy trauma – most commonly on the sternal body.
- **IMPORTANT:** high frequency of associated injuries: pulmonary and cardiac trauma, craniocerebral injuries, ribs, thoracic and lumbar spinal fractures.

52-years-old female patient after a motor vehicle accident. (A and C) Coronal and (B) Sagittal reconstruction CT images: showing manubrium fracture with soft tissue swelling (red arrows).
IV. TUMORS:

*CASE 9: METASTASIS:
- Most common neoplasms of the sternum: METASTASIS.
- Direct infiltration or hematogenous spread.
- Common sources: lung, breast, thyroid, kidney, colon and hematologic malignancies.

62-years-old male patient with multiple myeloma. (A) Axial, (B) Coronal and (C) Sagittal CT images: showing a large ill-defined lytic lesion in the manubrium (red arrows). Another lesion with the same characteristics is seen in the 6th left lateral costal arch (white arrow), with cortical destruction.
IV. TUMORS:

CASE 10: METASTASIS:

- Appearance may be lytic (multiple myeloma) or blastic/sclerotic (prostate or breast cancer).

69-years-old male patient with thymic carcinoma and myeloproliferative disease. (A) Axial, (B) Sagittal and (C) Coronal CT images: showing a multiple blastic lesions in the sternum (red arrows).
IV. TUMORS:

CASE 11: OSTEOSARCOMA:

- More commonly in older patients.
- Secondary malignancy following radiotherapy.

22-years-old female patient who previously underwent radiation therapy. MRI images: (A) Axial T2-WI; (B) Axial T1-WI; (C) Coronal T1-WI; (D) Coronal T2-WI; (E) Coronal enhanced T1-WI; (F) Sagital T1-WI; (G) Sagittal T2-WI; (H) Sagittal enhanced T1-WI: showing an osseous lesion with mixed signal /predominantly hyperintense on T2-WI with heterogeneous enhancement after intravenous contrast administration (red arrows).
IV. TUMORS:

*CASE 12: PLASMACYTOGRAM:

- Localized proliferation / solitary mass of neoplastic monoclonal plasma cells.
- Diffuse proliferation: MULTIPLE MYELOMA

70-years-old female patient with multiple myeloma. CT images: (A and B) Axial, (C and D) Coronal and (E and F) Sagittal reconstructions: showing an intramedullary expansile lesion of the sternum with cortical bone erosion (red arrows).
V. INFLAMMATORY CHANGES:

*CASE 13: CRYSTAL INDUCED ARTHROPATHY:

- **GOUT**: rare: typically well marginated paraarticular erosions, and appositional bone deposition with expansion of bone ends
- **PSEUDOGOUT**: CALCIUM PYROPHOSPHATE DIHYDRATE CRYSTAL DEPOSITION: *occasional*: typically chondrocalcinosis and tophaceous pseudogout formation.

93-years-old female patient. (A and B) Axial CT images: showing crystal deposition in the sternoclavicular joint (red arrows).
V. INFLAMMATORY CHANGES:

*CASE 14: SERONEGATIVE ARTHRITIS: PSORIATIC ARTHRITIS:

- Seronegative arthritides may affect the manubriosternal and sternoclavicular joints.
- **Common radiographic findings**: Erosions or fusion of the manubriosternal joint and sternoclavicular joint hyperostosis.

35-years-old female patient with psoriatic arthritis. MRI Sagittal (A) T1-WI, (B) T2-WI and (C) enhanced T1-WI: showing cortical erosion of the manubriumsternal joint with cortical bone sclerosis (low signal intensity on both T1 and T2 images: white arrows) and joint enhancement after intravenous contrast administration (red arrow).
V. INFLAMMATORY CHANGES:

*CASE 15: SAPHO SYNDROME:

- **SAPHO**: synovitis, acne, palmoplantar pustulosis, hyperostosis, and osteitis
- Wide spectrum of aseptic neutrophilic dermatoses with aseptic osteoarticular lesions.
- The sternoclavicular joint is most frequently affected (65%-90%).

52-years-old female patient with psoriatic arthritis. MRI Coronal (A) T1-WI, (B) T2-WI and (C) enhanced T1-WI: showing joint erosion and bone marrow edema of the sternoclavicular joint (**red arrows**) and an arthrosynovial cyst (**white arrow**).
V. INFLAMMATORY CHANGES:

CASE 16: TIETZE SYNDROME:
- Painful costochondritis of unknown cause – *mainly in young women.*
- Characterized by mineralized and swollen costal cartilage.

30-years-old female patient with left sternoclavicular joint pain. CT (A) Sagittal, (B) Coronal and (C) Axial images: showing mineralized and sclerotic bone of the left sternoclavicular joint (red arrows).
V. INFECTION: IATROGENIC

CASE 17: POST STERNOTOMY:

- Primary osteomyelitis of the sternum is uncommon.
- Related to intravenous drug abuse, immune deficiency states, hemoglobinopathy.

78-years-old female patient with secondary osteomyelitis after median sternotomy and myocardial revascularization. CT (A-B) Sagittal and (C-D) Axial images: showing erosive changes of the sternum (white arrows), soft tissue edema and fluid collection (red arrows).
V. OTHERS: POST OPERATORY

*CASE 18: STERNOTOMY DEHISCENCE:
- Complications after sternotomy is rare.
- Include: dehiscence, nonunion, secondary osteomyelitis /mediastinitis.

78-years-old female patient with 20 days history of sternotomy and myocardial revascularization. CT (A and B) Coronal and (C) Axial images: showing sternal dehiscence with displacement of the wires (red arrows).
V. OTHERS:

CASE 19: MYONECROSIS:

- Myopathy involving infarcted muscle.

24-years-old male patient with sternal pain after exercise. MRI (A and B) Axial T1-WI, (C) Coronal T-WI and (D) Coronal enhanced T1-WI showing heterogeneous peripheral enhancement with central necrosis of the pectoralis major sternal insertion (red arrows).
V. OTHERS:

CASE 20: PAGET DISEASE:

- Chronic skeletal disorder characterized by abnormal and excessive remodeling of bone.
- Abnormal osseous resorption/apposition: variable clinical and imaging manifestations.

75-years-old male patient with Paget disease. (A) Coronal and (B) Sagittal CT images: showing mixed lytic and sclerotic changes involving the stenum. Classic findings include: osteolysis, trabecular coarsening, cortical thickening, and osseous expansion (red arrows).
CONCLUSION:

*To achieve accurate and timely diagnoses that facilitate the management and appropriate treatment, radiologists should be familiar with the appearances of the diseases that may affect the sternum.

